Agricultural Soil Ozonation by Dielectric Barrier Discharge Plasma (aimed for pesticides and fertilizers)

¹Mai Kai Suan Tial and ²Fumiaki Mitsugi

¹Mandalay Technological University, Myanmar, ²Kumamoto University, Japan

e-mail: mkstial@mtu.edu.mm, mitsugi@cs.kumamoto-u.ac.jp

Kumamoto University

How Do We

Make

Ozone??

Discharge gap

O₃+O₂

2. Generation of Ozone

Dielectric Barrier Discharge

1. Introduction

Gross Domestic Product.

Figure Source: https://frontiermyanmar.net/en/myanmar-agriculture-101

What is OZONE?

- Ozone is tri-atomic form of oxygen.
- Most powerful commercial oxidizing agent.
- •Kills bacteria 3,125 times faster than chlorine.
- Unstable- must be generated and used onsite.

Dielectric Barrier Discharge (DBD) Plasma

➤DBD is the electrical discharge between two electrodes separated by an insulating dielectric barrier.

DBD plasma can be used for

- Ozone generation
- Pollution control
- Surface treatment, etc.

DBD plasma's Advantages

- Low gas temperature
 - Simple system ⇒ low cost

and Plasma

 $3 O_2 \longrightarrow 2 O_3$

High voltage electrode

3 Glass, Ceramic or Enamel Dielectric

Purpose of this study

Purposes of this research are

- to adopt non-thermal plasma technology to agriculture in order to improve the production yield without negative health and environmental impacts in Myanmar,
- to generate cheap and efficient ozone by dielectric barrier discharge (DBD) plasma providing sufficient reactive region spatially and temporally.

4. Developed Soil Ozonation System

➤ About 70% of the population is actively engaged in

agriculture, which contributes about 50% of the national

To control the sufficient ozone

Fig: experimental setup of soil ozonation system

generation the electrical by properties using the N-series of alternating diodes for silicon current.

breakover voltage, $V_{BO} = 400 \text{ V}$

SIDAC is used as a simple high voltage power source with rapid voltage change for the reason of cost effective.

The sample soil was 100 g (Red brown forest soil, livestock and animal wastes, rice husk) and treatment time was 30 mins.

Changes in Acidity and Nitrogen nutrient of Organic Soil after ozone treatment

		arter
Conditions	рН	NO ₃ -N
	(H_2O)	(mg/kg)
Control	9.34	175
Without	8.93	375
SIDACs		
5 SIDACs	8.63	225
10 SIDACs	8.83	325

✓ pH levels of treated soil decreased after treatment because of the decomposition of organic substances that increases acids.

✓ NO₃-N content increased throughout all treated soil compared to control soil by two times.

✓ Such increases in acids and nitrogen nutrient provide enhanced effect on the growth of plant.

5. Results and Discussion

Acknowledgments

This research is funded by Japan International Cooperation Agency (JICA) under the project of Enhancement of Engineering Higher **Education (EEHE) in Myanmar.**

6. Conclusions and future plan

- ✓ We have developed the soil ozonation system by dielectric barrier discharge plasma.
- ✓ Controlling of applied voltages by SIDACs, making changes in a plasma properties and ozone generation.
- ✓ Investigation on acidity and nitrogen nutrient showed that after treatment, nitrogen nutrient increased significantly, and pH level was decreased because of the decomposition of organic substances that increases acids.
- ✓ However, power consumption, heat property, and durability of the sources for this application are under investigation.
- ✓ The number of SIDACs is needed to be optimized to get the efficient ozone generation.
- ✓ The plants' cultivations growing in Myanmar's soil to compare Japan's soil will be compared.

References

May Lin Aung, et al., EEI-LMS-POLICY BRIEF: NO. 2017-PB3

F. Mitsugi, et al., IEEE Transactions on Plasma Science, 45 (2017) 3076-3081 F. Mitsugi, et al., IEEE Transactions on Plasma Science, 45 (2017) 3082-3088 F. Mitsugi, IEEE Transactions on Plasma

Science, 47 (2019) 52-56